Blog

5 PREDICCIONES DE MACHINE LEARNING

5 PREDICCIONES SOBRE LA PRÓXIMA OLA DE MACHINE LEARNING: ¿CÓMO AFECTARÁ A LOS NEGOCIOS?

Cuando se acerca una nueva ola tecnológica, la inteligencia artificial se prepara para llegar a nuevas industrias, con un gran potencial para revolucionar los negocios y las organizaciones. A continuación, te presentamos las 5 predicciones sobre el Machine Learning.

 

1- Machine Learning contradictorio: Es una técnica en la que los algoritmos reciben información malintencionada con el fin de que cometan errores de análisis. Los criminales que buscan explotar algoritmos ya cuentan con la capacidad de usar esta técnica, por lo que se espera que incremento su uso.

 

2– Machine Learning para preservar la privacidad: La autenticación a través de reconocimiento facial es considerada como una de las formas más seguras de iniciar sesión, sin embargo, ciertos datos de gran valor para los criminales, como las imágenes de los rostros de los usuarios, son comúnmente almacenadas sin cifrar en la nube y son vulnerables ante brechas de datos y demás ataques.

 

Los actuales algoritmos de Machine Learning funcionan mejor con datos sin procesar o información no anónima sobre cada usuario. Esto quiere decir que los datos almacenados son vulnerables ante atacantes que desean obtener información sensible sobre los rostros de los usuarios. Se especula que los futuros algoritmos serán capaces de funcionar con datos anónimos o cifrados, brindando protección fuerte mientras soportan soluciones de Machine Learning de alto rendimiento.

 

3- Plataformas de Machine Learning de extremo a extremo: Machine Learning de extremo a extremo les permite a los desarrolladores y data scientists conectarse y trabajar de forma transparente y conjunta a lo largo de las etapas de preparación de datos, selección de algoritmos, desarrollo de modelos, ajuste de implementación y optimización, y lanzamiento.

 

4- Aprendizaje activo: Los algoritmos de aprendizaje activo usan Machine Learning para etiquetar datos automáticamente durante el proceso de entrenamiento del algoritmo, dejando solo una pequeña porción del trabajo a un anotador humano.

 

Esto ahorra enormes cantidades de tiempo valioso y dinero a los equipos que a menudo trabajan con gigantescas cantidades de datos. Por ahora, los algoritmos de aprendizaje activo han sido usados principalmente con fines académicos e investigativos, pero podemos que la industria antifraude comenzará rápidamente a usar esta tecnología y actualmente está desarrollando algoritmos con aplicaciones de seguridad.

 

5- Aprendizaje de pocos intentos: El aprendizaje de pocos intentos es una forma de adaptar ciertos algoritmos, como redes neurales, con el fin de mejorar su rendimiento al momento de clasificar poblaciones de las cuales hay pocos datos.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

× Contáctanos